Spacer
News
News > Sumatra Tsunami: Sediment Trenches Implicated

Sumatra Tsunami: Sediment Trenches Implicated

  23/06/2011
The devastating power of the 2004 Boxing Day Sumatran-Andaman earthquake and unusual geological characteristics of the seabed and underlying sediments south of the epicentre contributed to the ensuing tsunami, the deadliest recorded in modern times. The findings come from a US-led team involving researchers based at the UK National Oceanography Centre in Southampton. The researcher's findings imply that tsunami hazards may be more severe along continental margin regions where trenches contain thick compacted and strong sediment.


2004 Sumatran Tsunami Explained. Image Courtesy: Simminch through Flickr
"Our findings published in the scientific journal Nature Geoscience will help Earth scientists assess earthquake hazard and the risk of large destructive tsunamis globally," said University of Southampton geologist Dr Lisa McNeill, co-author on the paper.


On 26 December 2004, a powerful ‘megathrust' earthquake struck to the north of Simeulue Island, Indonesia, rupturing part of the Sumatran-Andaman margin plate boundary. The resulting tsunami ranks as the deadliest ever recorded in modern times. It inundated low-lying coastal regions and islands around the Indian Ocean, leading to massive infrastructure damage and loss of life.


Despite the enormity of the earthquake, the size of the tsunami that it generated surprised many geoscientists. Evidence has since emerged that the earthquake rupture propagated unusually close to the deep Sunda Trench, which forms the boundary between the converging Indo-Australian and Eurasian plates in the north-eastern Indian Ocean. This was unexpected because the weak marine sediments usually found at regions where tectonic plates converge would normally help absorb energy released by an earthquake stopping the rupture progression.


"By investigating the geological characteristics of the margin landward of the Sunda Trench, of the deep seabed and the sediments beneath, we hoped to gain a better understanding of why the earthquake generated such a large tsunami," explained Dr Tim Henstock, also a co-author based at University of Southampton.


To assess the structure of the Earth's crust in the critical area, the researchers collected and analysed seismic reflection images beneath the seabed, along 1,250 kilometres of the southern part of the rupture zone. They acquired these data while aboard the German research vessel Sonne in the summer of 2008.
Their results indicate the presence of large consolidated and compacted blocks of sediment uplifted and faulted by the subduction process. These sediments are derived from underwater flows of sediment (turbidites) that form the Nicobar Fan at the eastern tip of the vast Bengal Fan and are up to 4 km thick on the subducting Indian tectonic plate.. The thick sediments have been thrust landward to form a strong marginal plateau with a width of around 130 kilometres.


"It appears that the 2004 rupture propagated beneath this plateau, further seaward than expected, and the depth and solidity of the sediments forming the plateau have played a part in the power of the devastating tsunami that the earthquake generated," said Tim.

 

 




comments powered by Disqus
Read more about:
 data  tsunami  vessel  Seismic 

Supplier: National Oceanography Centre Southampton

More news from this supplier:
UK-based Advanced Autonomous Systems Development Finalists Announced
Europe’s Deepest Glider to be Developed
Call for Applications from SMEs for Ocean Research Facilities
Marine Monitoring to Help Protect Lives at Sea
Prize for Rock Property Discovery
Unified and Accessible Global Marine Data to Become Available
Global Climate on Verge of Multi-decadal Change
Global Ocean Goes Online for Ocean Business
NOC Open for Business at Ocean Business
Ocean Current Monitoring Reveals Secrets of Changing UK Winters


EIVA Opens Office in Singapore
Launch of Cable-laying Vessel Maersk Connector
Guidance on Tidal Turbulence to Reduce Risk for Industry
Explorer DVLs for LAUV System
Installation of Ocean Networks Canada’s Near-Field Tsunami Detection
RAPID Depth Measurements in UK
Bruno Faure is IMCA’s New President
Seabed Geosolutions Secures Two New Contracts
MMT Wins UXO Contract for Race Bank
UMI SAN Adds Hydrographic Vessel
Spacer
Spacer
Spacer
Spacer
Upcoming Events
Spacer
How to Use QPS' Qimera to Validate Processed Point Files

QPS Qimera processing software has been released earlier this year. To demonstrate the capabilities, this video shows how to load processed point files into a Qimera Project. It explains what processed point files are; how to specify the coordinate system of the project and the source files; how to create a Dynamic Surface from processed point files and how to change the dynamic surface and adjust the colour map to aid data editing and validation.

 

 

geo-matchingcomQPS Qimera on Geo-Matching.com

Spacer
Last 3 items:
Spacer
Last Comments
Spacer
Spacer
Spacer
Spacer
Spacer