Spacer
News
News > Deepsea Challenger at WHOI

Deepsea Challenger at WHOI

  10/07/2013
Following a cross-country journey with stops at science institutions, museums and even Capitol Hill, filmmaker and explorer James Cameron recently handed over the Deepsea Challenger, the only human-occupied vehicle currently able to reach the very deepest parts of the ocean, to Woods Hole Oceanographic Institution (WHOI, USA). There, the submersible system will be put to good use as a scientific platform for future deep-sea missions.

 

Launching Deepsea Challenger - Image James Cameron

Enabling James Cameron to make his nearly 11-kilometre descent to the deepest place on earth, exploring the ocean floor, conducting experiments, collecting samples, and returning safely to the surface, requires an underwater vehicle unlike any other. As with spaceships, deep-sea submersibles must be engineered to accommodate innumerable challenges, including extreme changes in pressure, temperature and the incessant absence of sunlight.

 

It took James Cameron and his team seven years to complete the Deepsea Challenger, and the challenges related to this process spanned the incorporation of several new technologies, designs and materials – along with extensive testing. From its unique vertical attitude to its purpose developed materials, including a highly sophisticated syntactic foam developed specifically to withstand the immense pressure at the very bottom of the ocean, the vehicle represents a significant showcase of engineering innovation.

Standard connectors

Almost everything on the Deepsea Challenger is custom designed and tailor-made for its specific purpose, as the vehicle can rely on engineered systems and components, designed to function under enormous strain. Amongst these, however, the many stainless steel PBOF and bulkhead SubConn connectors, supplied by Ocean Innovations, mark an exception to prove the rule. Tested explicitly to work at the extremists of depths, these industry standard connectors are used to interface the vehicle battery packs, the spot and LED panel lighting arrays, HD and IMAX quality 3D cameras, along with and other vital instruments and sensors used on the Deepsea Challenger. In addition, SubConn connectors, including glass sphere modified units, were widely used to interface the two unmanned robotic landers that descended to perform pre-programmed tasks in the abyss - prior to the arrival of the Deepsea Challenger.    

 

Image: Launching the Deepsea Challenger. Image courtesy: James Cameron.




Supplier: MacArtney Group

More news from this supplier:
Mooring Winches for MBARI Research Vessels
TRIAXUS ROTV for CSIRO
MacArtney and Meyah Ich Ha Join Forces in Offshore Mexico
LUXUS Dropplate for Underwater Investigations
MacArtney Boosts North American System Sales
MMT FOCUS-2 Systems Upgrade
MacArtney FLEXUS Adds Flexibility to a Towed Vehicle
Multiple New Solutions to Premier for MacArtney
ROV System for DBB
Teaming up for PiE 2014


SeeTrack Neptune Integrated into SeaRobotics' USV-2600
Falcon ROV Helps Japan Harness Offshore Wind
Tritech Hammerhead Offers Search Benefits
iXBlue Representation at OI China
Research Vessel Operating after Earthquake, Tsunami and Storm
Optech to Present at OI China 2014
Side-scan Sonar Operations and Maintenance Seminar
UTEC Survey Completes Infield AUV Inspection
Hydro14 Programme Finalised
Aviation Module for SevenCs‘ Kernel Version


   


comments powered by Disqus
Search on Geo-matching.com
Spacer
Spacer
Spacer
Spacer
Upcoming Events
Spacer
White Shark Attack on WHOI REMUS Captured on Camera

A 3-metre-long white shark tried to have a REMUS AUV belonging to WHOI for lunch and the action was filmed by the AUV's camera. In this broadcast, WHOI researchers provide background to the attack, in which the shark's jaws exerted a pressure of 2 tons per inch to the ABC news item reporter.

 

Spacer
Last 3 items:
Spacer
Last Comments
Spacer
Spacer
Spacer
Spacer
Spacer