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TRAINED	FOR	DIFFERENT	SCENARIOS

Automatic	detection	of	seafloor
pipelines	with	deep	learning

Seafloor	pipelines	are	a	critical
infrastructure	for	oil	and	gas	transport.
Timely	inspection	is	required	to	verify	their
integrity	and	determine	the	need	for
maintenance,	as	failures	in	these	pipes
may	interrupt	the	vital	distribution	of	oil
and	gas	and	cause	environmental
damage.	The	inspection	of	seafloor
pipelines	is	a	challenging	task,	however,
due	to	their	remote	location	and	vast
length.	Autonomous	underwater	vehicles
(AUVs)	such	as	HUGIN,	equipped	with
algorithms	for	pipeline	detection	and
following,	represent	cost-effective
innovations	in	these	operations.

Autonomous	pipeline
inspection
Traditionally,	external	pipeline	inspection
has	been	conducted	with	large	and
advanced	offshore	vessels	applying	towed
or	remotely	operated	vehicles	(ROVs).
The	objective	is	to	detect	burial,	exposure,
free	spans	and	buckling	of	the	pipeline,	as
well	as	indications	of	damage	due	to	third
party	activities,	such	as	trawling	and
anchoring,	and	debris	near	the	pipeline.
During	the	last	two	decades,	AUVs	have
emerged	as	a	more	efficient	and	less
costly	solution,	as	they	are	stable

platforms	that	can	travel	faster	(typically	3-5	knots	compared	to	1-2	knots	for	inspection	ROVs)	and	operate	without	constant	supervision
from	a	mothership.	Typical	payload	sensors	for	these	AUVs	include	multibeam	echo	sounders	(MBES),	side-scan	sonar	and	optical
cameras.

To	collect	high-quality	sensor	data	for	inspection,	the	AUV	must	follow	the	pipeline	at	a	specified	cross-distance	and	height.	Global	position
estimates	from	the	vehicle’s	inertial	navigation	system	will	not	suffice,	due	to	inevitable	drift	in	the	estimates	over	time	and	uncertainties	in
prior	pipeline	position	data.	One	solution	is	the	automatic	detection	of	pipelines	in	the	sensor	data	to	provide	real-time	input	to	the	vehicle’s
control	system,	which	then	maintains	the	desired	relative	position	and	orientation	(see	flow	chart	in	Figure	2).	This	is	the	basis	for	the
PipeTracker	system	[1],	cooperatively	developed	and	refined	since	2010	by	the	Norwegian	Defence	Research	Establishment	(FFI)	and
Kongsberg	Maritime	(KM).	The	PipeTracker	applies	traditional	image	analysis	techniques	to	detect	and	track	pipelines	in	sensor	data	from
either	side-scan	sonar	or	MBES.

Figure	1:	A	HUGIN	AUV	preparing	to	dive.

Sensor	data
An	MBES	is	an	active	sonar	for	bathymetric	mapping	of	a	swath	centred	below	the	AUV.	The	sensor	estimates	both	the	strength	and	time
delay	of	the	seafloor	backscatter,	providing	the	reflectivity	and	relative	depth	values.	Figure	3	presents	a	pipeline	data	example	collected
with	a	HUGIN	AUV	(see	Figure	1)	in	shallow	water	off	the	coast	of	Brazil,	while	Figure	4	presents	a	TileCam	camera	image	of	a



corresponding	subarea.

Through	a	collaboration	between	FFI,	the	University	of	Oslo	and	KM,	we	investigated	how	to	use	deep	learning,	described	further	in	the
next	section,	for	the	automatic	online	detection	of	seafloor	pipelines	in	MBES	data.	To	this	end,	we	created	and	defined	a	method	for
annotating	(labelling)	pipelines	in	MBES	data.	Moreover,	we	tailored	and	extended	existing	state-of-the-art	deep	learning-based	object
detection	techniques	to	this	novel	task	and	imaging	format.

The	dataset	used	is	a	collection	of	MBES	images	from	15	pipeline	inspection	missions	gathered	with	different	HUGIN	AUVs	by	KM	and
FFI	at	various	locations	around	the	world.

Figure	2:	Flow	chart	of	pipeline	detection	and	following.	The	AUV	uses	both	prior	knowledge	of	the	pipeline	position	and	real-
time	sensor	data	analysis	to	maintain	the	specified	sensing	geometry.	The	green	boxes	provide	the	scope	of	our	work,	while
the	blue	boxes	give	the	larger	navigation	context.

Deep	learning	for	pipeline	detection
Deep	learning	refers	to	artificial	neural	network	(ANN)	models	with	many	layers.	Larger	models	coupled	with	increasing	computational
capabilities	and	huge	amounts	of	data	have	led	to	the	success	of	ANNs.	In	recent	years,	ANNs	combined	with	deep	learning	has	become
the	best	performing	method	for	countless	data	processing	tasks,	such	as	image	classification,	detection,	tracking,	speech	recognition,
synthesis,	translation,	the	games	Chess	and	Go,	and	many	more.

With	the	impressive	achievements	of	deep	learning,	we	sought	to	tailor	and	test	it	on	the	pipeline	detection	task.	To	make	the	best	use	of
deep	learning,	we	looked	to	state-of-the-art	methods	on	similar	tasks.	In	particular,	we	looked	to	models	that	could	detect	and	classify
different	objects	in	optical	images.	Processing	and	interpreting	optical	images	are	two	of	the	early	beneficiaries	of	deep	learning,	and	have
also	spearheaded	much	of	its	progress.	We	then	tailored	the	model,	a	combination	of	ResNet50	[2]	and	You	Only	Look	Once	(YOLO)	[3],
to	the	idiosyncrasies	of	the	seafloor	pipeline	detection	task	and	the	MBES	data	format.	Figure	5	illustrates	our	deep	learning	model.

Deep	learning	has	two	stages:	training	and	inference.	The	training	phase	shows	the	model	millions	of	examples	of	what	we	want	it	to	do,
and	through	this	training	phase,	the	model	becomes	increasingly	better.	After	training,	the	model	is	expected	to	understand	the	general
principle	of	the	task	and	to	work	well	on	new	unseen,	similar	examples.	When	the	model	is	used	to	interpret	new	examples	after	the
training	phase,	it	is	in	inference	mode.	The	performance	in	the	inference	mode	is	the	measure	of	success	of	the	model.

Figure	3:	Depth	and	reflectivity	data	from	the	EM2040	MBES	mounted	on	a	HUGIN	AUV.	A	single	pipeline	(inner	diameter
15cm)	is	visible	in	both	data	channels	at	approximately	beam	number	200.	Image	sizes	are	22m	x	61m.

One	key	factor	for	a	successful	deep	learning	model	is	the	data	examples	it	trains	on.	To	this	end,	we	need	to	define	and	create	labels	that
can	supervise	the	model	to	learn	its	task.	As	existing	deep	learning	models	such	as	ResNet	and	YOLO	do	not	support	our	data	format	and
task,	we	created	a	tool	to	manually	annotate	pipelines	in	MBES	data.	These	annotations	defined	the	goal	of	the	task,	which	is	to
automatically	predict	whether	an	MBES	image	segment	contains	seafloor	pipelines	or	not,	and	where	the	detected	pipelines	are.	In
addition	to	data	and	labels,	training	an	ANN	requires	formulating	the	task	objective	mathematically.	Because	of	the	peculiarities	of	the	task
and	data	format,	we	also	proposed	a	novel	seafloor	pipeline	detection	task	objective,	the	details	of	which	are	described	in	[4].

Results
We	evaluated	the	trained	model	in	two	ways:	(i)	how	well	it	predicted	whether	an	MBES	image	segment	contained	a	pipeline,	and	(ii)	how
precisely	it	located	the	top	of	pipelines.	During	testing,	our	model	correctly	predicted	pipelines	in	over	85%	of	previously	unseen	cases;	in
other	words,	data	examples	that	the	model	had	not	trained	on.	Moreover,	the	model	also	correctly	located	the	pipelines	with	an	on	average
less	than	two	pixels	offset	to	the	labelled	pipeline	top,	where	pixels	are	pings	and	beams,	interchangeably.	For	reference,	the	width	of	the
pipeline	in	the	depth	channel	of	Figure	3	spans	approximately	five	beams.

Figure	4:	A	HUGIN	camera	image	of	the	pipeline.	The	image	covers	a	seafloor	area	of	approximately	6m	x	4m	centred	at	ping
number	200.

Conclusion	and	prospects
This	work	demonstrates	that	deep	learning	can	effectively	be	used	to	detect	pipelines	in	MBES	data.	Although	traditional	image	analysis
algorithms	are	already	successfully	used	to	detect	seafloor	pipelines,	these	are	generally	hand-designed	and,	to	some	degree,	bespoke
for	the	application.	With	deep	learning,	however,	the	model	learns	through	training	how	to	detect	the	pipelines	in	different	scenarios.	A
deep	learning	model	can	often	be	improved	simply	by	using	more	data	examples.	This	means	that	detection	performance	can	be	improved
over	time	as	less	common	pipe	configurations	and	environments	are	encountered	–	without	the	need	for	new	algorithm	development	or
refinement.

In	further	work,	we	will	consider	applying	deep	learning	to	detect	seafloor	pipelines	in	both	side-scan	sonar	and	optical	images.	Moreover,
we	envision	using	deep	learning	to	evaluate	the	state	of	the	pipeline	in	all	the	different	sensor	data,	which	would	automate	the	inspection
even	further.

Figure	5:	Illustration	of	the	pipeline	detection	model.	At	the	top,	MBES	image	segments	are	input	to	the	model.	At	the	bottom,
five	variables	represent	the	detection	results,	where	c	indicates	whether	the	input	contains	a	pipeline	or	not	and	x1,x2,x3,x4
gives	the	coordinates	of	the	pipeline	segment	if	the	input	contains	a	pipeline.	The	blue	box	is	an	established	deep	learning
architecture,	while	the	green	boxes	customize	the	model	to	the	MBES	data	format	and	seafloor	pipeline	detection	task.
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