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REVIEWING	REMOTE	SENSING	IMAGE
CLASSIFICATION	TECHNIQUES	FOR
ACCURATE	SEAGRASS	MAPPING

Mapping	the	subsea	forests	of
the	Mediterranean

What	is	the	best	image	classification
technique	to	optimize	maps	so	that
effective	action	can	be	taken	to	conserve
seagrass	meadows?

The	distribution	of	Posidonia	oceanica
seagrass	meadows	has	been	mapped	by
a	combination	of	remote	sensing
techniques,	geographical	information
systems	(GIS)	and	sonar	data.	A
fundamental,	but	challenging,	part	of	this
methodology	is	the	remote	sensing	image
classification.	This	article	presents	a
review	of	different	image	classification
techniques	to	optimize	the	final	maps,	so
that	effective	action	can	be	taken	to
conserve	seagrass	meadows.

The	degradation	of	P.	oceanica	seagrass
meadows	is	a	major	concern	as	these
marine	ecosystems	play	a	fundamental
role	in	the	health	and	productivity	of	many
Mediterranean	marine	habitats.	Seagrass
monitoring	and	mapping	are	fundamental
tools	for	measuring	the	status	and	trends
of	meadows	and	their	environmental
condition	(Topouzelis	et	al.,	2018).	The
Greek	Non-Governmental	Organization
Archipelagos	Institute	of	Marine
Conservation,	operating	from	the	islands
of	Samos	and	Lipsi,	focuses	on	the
collection	of	spatial	data	around	the	Greek

coast	to	generate	more	accurate	habitat	distribution	maps	of	P.	oceanica,	so	that	these	highly	valuable	ecosystems	can	be	monitored	and
protected.	Archipelagos	conducts	marine	research	with	multiple	research	vessels,	including	the	22-metre	long	Aegean	Explorer	shown	in
Figure	1.	This	vessel	is	equipped	with	an	array	of	scientific	instruments,	including	single	and	multibeam	sonar,	a	structure	scanner,	a
biomass	scanner	and	an	underwater	camera	capable	of	reaching	depths	of	300	metres.

Figure	1:	Archipelagosâ€™	research	vessel	â€˜Aegean	Explorerâ€™	(photo:	Nicola	Mayrhofer).

Mapping	seagrass	distribution
The	distribution	of	P.	oceanica	is	mapped	by	means	of	remote	sensing	techniques,	GIS	and	sonar	measurements	in	the	field.	The	input	for
the	remote	sensing	methodology	is	Sentinel-2A	satellite	imagery.	The	satellite	image	is	preprocessed	to	deal	with	necessary	corrections	to
interferences	that	determine	the	light	in	the	atmosphere	and	water,	before	deriving	any	quantitative	information	on	the	aquatic	habitats	that
focus	on	seagrass	(Traganos	and	Reinartz,	2018).	The	main	steps	here	are	atmospheric	correction,	sun	glint	removal	and	water	column
correction.



During	the	field	operations,	ground	truth	data	about	the	seagrass	meadows	was	collected.	A	DownScan	sonar	was	installed	on	a	research
vessel	and	at	the	rear	of	a	kayak	to	obtain	information	about	the	seafloor	(Figure	2	and	3).	The	sonar	transducer	emits	ultra-sound	waves
to	the	seaï¬‚oor	from	which	bottom	morphology	is	derived.	When	P.	oceanica	is	present	it	appears	on	the	sonar	output	as	a	fuzziness
above	the	seaï¬‚oor	as	shown	in	Figure	4.	Waypoints	are	set	for	P.	oceanica	(P)	or	no	P.	oceanica	(NP),	which	are	used	as	training	data
during	the	image	classification	process	and	accuracy	data	during	the	accuracy	assessment.

Classifying	seagrass	presence	or	absence
After	the	correction	of	the	satellite	image,	the	pixels	were	classiï¬​ed	to	indicate	P.	oceanica	presence	or	absence.	Essential	in	most
aquatic	remote	sensing	studies	is	the	process	of	identifying	distinctive	cover	or	substrate	types	in	the	study	area	on	a	satellite	image	and
assigning	them	to	the	proper	classes,	which	is	deï¬​ned	as	remote	sensing	image	classiï¬​cation.	In	this	methodology,	supervised	image
classification	is	applied,	in	which	the	classification	is	performed	with	ground	truth	data.

Four	supervised	image	classifiers	are	reviewed:	Maximum	Likelihood	Classifier	(MLC),	Radial	Support	Vector	Machine	(SVM),	Linear	SVM
and	Random	Forest	(RF).	Each	of	these	techniques	is	built	on	its	own	mathematical	function.	The	choice	of	a	technique	can	be	based	on
different	criteria,	such	as	image	resolution,	spatial	scale	and	the	ground	truth	data	set.	The	techniques	are	reviewed	on	their	accuracy
percentage	and	Kappa	Index.	These	parameters	are	derived	by	means	of	the	accuracy	waypoints	and	a	Confusion	Matrix	(Cohen,	1960).

Figure	2:	Spatial	data	collection	with	sonar	equipment	installed	on	the	boat	(photo:	Anne	van	der	Heijden).

Comparing	image	classifiers
The	four	image	classification	techniques	were	performed	for	six	different	islands	in	the	Southeast	Aegean	Sea,	at	three	different	spatial
scales	and	with	different	waypoint	densities	to	optimally	explore	the	function	and	performance	of	the	techniques.	Figure	5	indicates	the
seagrass	distribution	around	the	island	of	Lipsi,	modelled	by	the	four	classifiers.	Due	to	the	limitations	of	satellite	imagery,	the	distribution
is	modelled	to	a	bathymetry	of	20	metres.	The	maps	show	significant	differences	in	seagrass	distribution	modelled	by	the	four
techniques.			

Figure	3:	Kayak-based	data	collection	with	a	DownScan	sonar	(photo:	Anne	van	der	Heijden).

RF	and	Radial	SVM	resulted	in	the	most	accurate	maps	(respectively	88%	and	72%)	for	this	study,	even	when	the	waypoint	density	was
reduced.	It	is	evident	that		the	seagrass	pixels	classified	by	RF	are	more	randomly	distributed	than	with	Radial	SVM,	which	clearly	shows
the	function	of	these	two	techniques.	MLC	seems	to	overestimate	the	P.	oceanica	coverage,	as	more	than	50%	of	the	NP	points	are
modelled	as	P	pixels.	Linear	SVM	makes	an	extreme	underestimation	as	98%	of	the	P	points	are	modelled	as	NP	pixels.	

Figure	4:	DownScan	sonar	output	(left)	and	corresponding	seagrass	patch	captured	by	underwater	camera	(right).

Concluding	remarks
The	modelling	of	P.	oceanica	coverage	around	islands	in	the	Southeast	Aegean	Sea	resulted	in	highly	accurate	outputs	modelled	by	RF
and	Radial	SVM.	The	review	has	shown	that	each	image	classification	technique	consists	of	its	own	function	and	therefore	delivers
distinguishing	outputs.	The	choice	of	a	classification	technique	depends	on	different	criteria,	including	spatial	scale,	image	resolution	and
the	ground	truth	data	set.

Simultaneously,	the	choice	of	a	classiï¬​cation	technique	also	strongly	depends	on	the	purpose	and	use	of	the	ï¬​nal	maps.	For	example,
Archipelagos	is	committed	to	conserving	the	seagrass	by	presenting	the	maps	to	the	government,	local	communities,	ports	and	ï¬​shermen
to	achieve	legislation,	protection	and	awareness.	In	this	case,	a	classifier	that	slightly	overestimates	is	more	likely	to	be	selected	than	one
that	strongly	underestimates.	These	classiï¬​cation	purposes	and	applications	should	be	kept	in	mind	when	investigating	the	techniques
and	the	motives	for	selecting	one.	Because	of	these	motivations,	further	contributions	and	efforts	are	required	to	investigate	the
assessment	and	applications	of	remote	sensing	image	classification	techniques.

Figure	5:	P.	oceanica	distribution	around	the	coast	of	the	island	of	Lipsi.
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