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DERIVING	BENTHIC	HABITAT	MAPS	FROM
HYDROACOUSTIC	DATA	USING	MACHINE
LEARNING

Using	machine	learning	to
derive	benthic	habitat	maps

The	South	African	Council	for	Geoscience
recently	launched	an	initiative	to	optimize
marine	geophysical	data	collection	in
South	African	waters.	The	main	aim	of	the
initiative	is	to	produce	marine	offshore
maps	with	100%	seafloor	coverage	in	the
highest	resolution	currently	possible,
according	to	International	Hydrographic
Organization	(IHO)	standards.	Scientists
set	to	work	and	developed	a	tool	to
classify	seafloor	bathymetry	and	a
predictive	tool	that	classifies	geological
data	into	substrate	maps	using	machine
learning	techniques.

In	the	recent	history	of	southern	Africa,
there	has	not	been	a	large-scale
systematic	marine	geophysical	offshore
mapping	project.	This	lack	of	data	resulted
in	the	Council	for	Geoscience	initiating	its
own	offshore	mapping	programme	to
optimize	marine	geophysical	data
collection.	The	main	aim	of	the	initiative	is
to	produce	marine	offshore	maps	with
100%	seafloor	coverage	in	the	highest
resolution	currently	possible,	according	to
International	Hydrographic	Organization
(IHO)	standards.	One	of	the	main	focuses
of	the	strategy	has	been	technology	and
innovation	in	mapping,	to	better	inform
research	projects	and	build	on	the
collective	knowledge	in	the	marine

sphere.	The	programme	also	plans	to	advance	the	public	understanding	of	science	exposing	the	character	of	the	seafloor,	which	has	been
underrepresented	up	to	now.

As	South	Africa	collates	and	acquires	new	hydrospatial	data,	it	is	imperative	that	these	datasets	are	used	for	a	range	of	applications.
Benthic	habitat	mapping	considers	the	distribution	of	biological	habitats,	as	chiefly	governed	by	morphology	and	geological	substrate,	and
lends	itself	to	applications	of	machine	learning,	and	the	South	African	seafloor	is	both	vast	and	variable	in	composition.	This	method	of
mapping	using	machine	learning	in	combination	with	marine	geophysical	and	biological	data,	tested	in	multiple	sites	across	the	South
African	coastline,	will	aid	in	improving	our	current	understanding	of	the	relationships	between	biota	and	physical	habitats.

Figure	1:	Combining	machine	learning	and	marine	geophysical	data	in	an	innovative	way	to	enhance	benthic	habitat	mapping
techniques.

Technical	specifications	for	data	collection



The	multibeam	bathymetry	and	backscatter	data	acquired	from	the	investigations	undertaken	so	far	were	collected	using	a	pole-mounted
400kHz	R2Sonic	2024	multibeam	echosounder,	with	motion	correction	and	dynamic	positioning	for	the	system	provided	by	an	Applanix
POS	M/V	Oceanmaster	inertial	motion	reference	unit	(IMU).	Positioning	was	derived	from	a	differential	correction	from	a	C-Nav	3050
DGPS.		Survey	line	planning	facilitated	full	seafloor	coverage.		The	acquisition	of	data	close	to	the	coastline	or	in	shoaling	areas	was	not
possible	because	of	the	presence	of	thick	kelp	beds	and/or	dangerous	surf	conditions.		It	took	approximately	70	days	to	process	and
interpret	~5,000	kilometres	of	data,	with	all	data	acquired	and	processed	using	QPS	Qinsy	and	Qimera	software.		The	bathymetric	data
was	levelled	to	Mean	Sea	Level	using	an	SBET	solution	relative	to	the	SAGEOID2010	orthometric	model.		The	final	bathymetric	grid	was
resolved	into	1m	(shoalest	depth)	bins/tiles/pixels.

Conventional	sidescan	backscatter	data	was	acquired	using	a	dual-frequency	(500/100	kHz)	Klein	3000	sidescan	sonar,	which	was	towed
behind	the	survey	vessel	using	a	CSW-9V	winch.	Lines	were	acquired	using	a	scan	range	of	75m	with	15%	overlap	of	adjacent	lines	and
full	ensonification	of	the	seafloor.		The	position	of	the	towfish	was	determined	using	the	reciprocal-layback	method,	transmitted	in	real	time
to	the	acquisition	software	via	a	radio	modem.		This	data	was	processed	using	NavLog	proprietary	software	to	produce	four	sidescan
sonar	mosaics	with	a	pixel	resolution	of	10cm.	The	multibeam	derived	backscatter	data	was	processed	using	QPS	FMGT	to	generate	final
mosaic	with	a	0.5m	resolution.

Figure	2:	Locality	map	of	Koeberg,	and	Clifton	and	Table	Bay	found	along	the	Western	Cape,	as	well	as	Cape	St	Francis	found
along	the	Eastern	Cape	of	South	Africa.

Differentiation	of	machine	learning	techniques
Over	the	past	two	decades,	machine	learning	has	become	a	cornerstone	in	information	technology,	as	increasing	amounts	of	data	are	now
available	to	scientists	in	various	fields.	This	accumulation	of	data	along	with	the	need	for	efficient	data	analysis	will	become	a	necessary
component	for	technological	advancement	in	the	future.	Machine	learning	is	based	on	computer	modelling	processes	and	their	multiple
manifestations;	it	combines	task-orientated	studies,	cognitive	simulations	and	theoretical	analysis	to	interpret	and	understand	a	wide
variety	of	datasets.

In	machine	learning,	there	are	two	main	categories	of	data	classification:	namely	supervised	and	unsupervised.	Supervised	classification
refers	to	the	use	of	image	processing	software	that	is	guided	by	the	user	to	specify	the	categories	into	which	the	data	should	be	classified.
During	supervised	classification,	ground-truthed	data	is	classified	and	then	used	to	constrain	the	interpretation	of	the	acoustic	data.
Unsupervised	classification	refers	to	a	method	where	the	outcomes	(groupings	of	pixels	with	common	characteristics)	are	based	on	the
software’s	analysis	of	an	image	without	the	user	providing	sample	classes.	The	software	then	determines	which	pixels	are	related	and
groups	them	into	classes.

Figure	3:	Data	collection	offshore	of	Table	Bay	in	April	2017.

In	the	first	phase	of	an	initiative	to	develop	capability	to	do	semi-automated	benthic	habitat	mapping	in	South	Africa,	three	different
machine	learning	techniques	were	tested	in	Table	Bay,	South	Africa	to	find	out	which	would	be	the	most	cost-effective,	efficient,	easy-to-
use	algorithm	for	the	multibeam	bathymetry,	backscatter	and	sidescan	sonar	data	collected	by	the	Council	for	Geoscience,	as	part	of	a
national	offshore	mapping	programme.	Initially,	an	unsupervised	method	of	classification	was	chosen,	with	these	results	being	compared
to	historical	data	interpreted	in	the	area,	to	ensure	a	level	of	accuracy.

Decision	Tree	Classifiers,	Random	Forests	and	k-means	clustering	algorithms	were	used	to	classify	the	hydroacoustic	data.	These
unsupervised	classification	methods	were	combined	with	a	classification	accuracy	measure	to	ensure	the	validity	of	the	results.	The
advantages	and	disadvantages	of	each	algorithm	were	identified	and	the	k-means	clustering	method	was	understood	to	be	the	best	suited
for	our	multibeam	bathymetry	and	backscatter	applications.		This	algorithm	was	conceptually	simple	and	easy	to	implement,	versatile,
easily	updated,	efficient	and	computationally	fast,	and	could	store	large	amounts	of	data.	The	Decision	Tree	Classifier	tended	to	over-fit
data,	did	not	work	well	with	complex	data	or	noisy	data,	whereas	the	Random	Forest	algorithm	was	slow	in	the	pre-processing	stages,	and
in	generating	predictions	due	to	the	multiple	decision	trees	being	output,	the	model	is	difficult	to	interpret.

Figure	4:	On	the	left:	Data	acquisition	in	Table	Bay,	including	sidescan	sonar,	multibeam	and	pinger	data.	Right:	The	Council
for	Geoscience	survey	vessel	R/V	Nkosi	at	sunrise.

Creation	of	substrate	and	benthic	habitat	maps	using	k-means	clustering
The	k-means	clustering	algorithm	was	then	used	to	create	substrate	maps	in	two	contrasting	study	areas	(Clifton	and	Koeberg,	in	South
Africa),	with	differing	geological	settings.		Drop	camera	footage	and	sediment	grab	samples	were	collected	from	the	sites	for	the	purposes
of	ground-truthing	and	improving	the	accuracy	of	the	k-means	clustering	algorithm.	Drop-camera	footage	was	classified	using	the
Collaborative	and	Automated	Tools	for	Analysis	of	Marine	Imagery	(CATAMI)	substrata	classification	scheme	and	sediment	grab	samples
were	processed	using	a	settling	tube.	The	statistics	from	the	samples	were	used	to	define	the	sediment	categories	that	were	input	into	the
clustering	algorithm,	in	order	to	validate	the	results	and	reinforced	by	determining	the	measure	of	classification	accuracy.	The	algorithm
results	reiterated	that	if	it	is	supplemented	with	new	data,	with	differing	seafloor	characteristics,	and	a	combination	of	different	input
datasets,	it	can	create	more	reliable	and	accurate	final	substrate	map	products.

The	k-means	clustering	algorithm	was	further	refined	in	an	area	that	has	significant	variability	in	geology	and	terrain,	in	comparison	to	the
first	test	sites	that	were	composed	mainly	of	unconsolidated	sediment.	Multibeam	bathymetry,	backscatter	and	ROV	footage	were
collected	in	Cape	St	Francis,	South	Africa,	and	the	hydroacoustic	data	was	processed	using	machine	learning	k-means	clustering.	Eight
ROV	dives	took	place	along	the	three	transects,	ranging	from	30-80m	in	depth	and	the	ROV	footage	was	classified	using	the	CATAMI
substrata	classification	scheme.	The	most	common	Phyla	ordered	from	most	abundant	to	least	abundant	were;	Cnidaria,	Mollusca,
Echinodermata,	Chordata	(fish	species),	Arthropoda	(Subphylum	Crustacea),	Bryozoa,	Porifera	and	Chordata	(Class	Ascidiacea).	These
species	were	identified	both	on	rocky	substrate	and	sand.	Using	this	scheme,	each	species	class	was	assigned	a	colour	and	input	into	the
k-means	clustering	algorithm,	which	linked	each	sediment	class	of	the	substrate	map	to	a	species	class.	This	was	done	using	the	k-means



clustering	algorithm	as	the	intensity	of	the	backscattered	waves	for	species	classes	could	be	linked	to	the	intensity	of	similar	seafloor
substrates.		The	algorithm	was	able	to	create	a	map	with	ten	different	benthic	habitats	that	combined	all	the	input	datasets	(multibeam
bathymetry,	backscatter	data	and	ROV	footage).	The	benthic	habitat	map	of	the	area	was	able	to	use	machine	learning	to	identify	and
quantify	different	habitat	types,	accounting	for	geology,	topography,	sediment	cover	and	species	distribution.

Figure	5:	An	overview	of	the	processes	and	methods	used	to	classify	the	multibeam	bathymetry	and	multibeam	backscatter
data.	This	image	highlights	the	multiple	steps	and	input	datasets	required	in	order	for	the	machine	learning	algorithm	to	create
a	reliable	and	accurate	benthic	habitat	map.

Conclusion
Like	most	coastal	nations,	South	Africa	is	exploring	avenues	to	grow	its	oceans’	economy	and	better	understand	the	marine	environment,
yet	relatively	little	is	known	about	the	distribution	of	the	country’s	offshore	benthic	biodiversity.	Given	the	considerable	expense	of	sampling
deep	benthic	biodiversity,	models	created	from	hydroacoustic	data	can	be	helpful	in	creating	benthic	habitat	maps,	which	can	in	turn	be
used	as	surrogates	for	unsampled	bioregions.	With	high	quality	and	accurate	modern	hydroacoustic	systems	in	combination	with	machine
learning	techniques,	the	ability	to	survey	and	sample	in	logistically	challenging	areas,	with	small	operating	budgets,	can	now	be	achieved.
Furthermore,	this	study	has	demonstrated	the	importance	of	implementing	machine	learning	techniques	to	improve	map	accuracy	and
reduce	processing	time.
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